Author:
Chiang Cheng-Wei,Sun Sichun,Ye Fang
Abstract
Abstract
We consider a class of models with extra complex scalars that are charged under both the Standard Model and a hidden strongly coupled
gauge sector and discuss the scenarios in which the new scalars are identified as the messenger fields that mediate the spontaneously broken supersymmetries from the hidden sector to the visible sector. The new scalars are embedded into 5-plets and 10-plets of an
gauge group that potentially unifies the Standard Model gauge groups. The Higgs bosons remain as elementary particles. In the supersymmetrized version of this class of models, vector-like fermions whose left-handed components are superpartners of the new scalars are introduced. Owing to the hidden strong force, the new low-energy scalars hadronize before decaying and thus evade the common direct searches of the supersymmetric squarks. This can be seen as a gauge mediation scenario with the scalar messenger fields forming low-energy bound states. We also discuss the possibility that in the tower of bound states formed under hidden strong dynamics (of at least the TeV scale), there exist a dark matter candidate and the collider signatures (e.g. diphoton, diboson, or dijet) of models that may show up in the near future.
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics