Author:
Ye Xu,Chen Zi-Qing,Li Ming-Da,Wei Shao-Wen
Abstract
Abstract
Considering the quantum electrodynamics (QED) effect, we study the phase transition and Ruppeiner geometry of Euler-Heisenberg anti-de Sitter black holes in the extended phase space. For negative and small positive QED parameters, we observe a small/large black hole phase transition and reentrant phase transition, respectively, whereas a large positive value of the QED parameter ruins the phase transition. Phase diagrams for each case are explicitly shown. Then, we construct the Ruppeiner geometry in thermodynamic parameter space. Different features of the corresponding scalar curvature are shown for both the small/large black hole phase transition and reentrant phase transition cases. Of particular interest is the additional region of positive scalar curvature, indicating a dominant repulsive interaction among black hole microstructures, for the black hole with a small positive QED parameter. Furthermore, universal critical phenomena are observed for the scalar curvature of Ruppeiner geometry. These results indicate that the QED parameter has a crucial influence on the black hole phase transition and microstructure.
Funder
National Natural Science Foundation of China
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献