Abstract
Abstract
It is currently widely accepted that gluons, while massless at the level of the fundamental QCD Lagrangian, acquire an effective mass through the non-Abelian implementation of the classic Schwinger mechanism. The key dynamical ingredient that triggers the onset of this mechanism is the formation of composite massless poles inside the fundamental vertices of the theory. These poles enter the evolution equation of the gluon propagator and nontrivially affect the way the Slavnov-Taylor identities of the vertices are resolved, inducing a smoking-gun displacement in the corresponding Ward identities. In this article, we present a comprehensive review of the pivotal concepts associated with this dynamical scenario, emphasizing the synergy between functional methods and lattice simulations and highlighting recent advances that corroborate the action of the Schwinger mechanism in QCD.
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献