Author:
Shi Haoqiang,Wang Xiao-Bao,Dong Guo-Xiang,Wang Hualei
Abstract
Abstract
In this work, we have performed Skyrme density functional theory (DFT) calculations of nuclei around 132Sn to study whether the abnormal odd-even staggering (OES) behavior of binding energies around N = 82 can be reproduced. With the Skyrme forces SLy4 and SkM*, we tested the volume- and surface-type pairing forces and also the intermediate between these two pairing forces, in the Hartree-Fock-Bogoliubov (HFB) approximation with or without the Lipkin-Nogami (LN) approximation or particle number projection after the convergence of HFBLN (PLN). The Universal Nuclear Energy Density Function (UNEDF) parameter sets are also used. The trend of the neutron OES against the neutron number or proton number does not change significantly by tuning the density dependence of the pairing force. Moreover, for the pairing force that is favored more at the nuclear surface, a larger mass OES is obtained, and vice versa. It appears that the combination of volume and surface pairing can give better agreement with the data. In the studies of the OES, a larger ratio of surface to volume pairing might be favored. Additionally, in most cases, the OES given by the HFBLN approximation agrees more closely with the experimental data. We found that both the Skyrme and pairing forces can influence the OES behavior. The mass OES calculated by the UNEDF DFT is explicitly smaller than the experimental one. The UNEDF1 and UNEDF2 forces can reproduce the experimental trend of the abnormal OES around 132Sn. The neutron OES of the tin isotopes given by the SkM* force agrees more closely with the experimental one than that given by the SLy4 force in most cases. Both SLy4 and SkM* DFT have difficulties in reproducing the abnormal OES around 132Sn. Using the PLN method, the systematics of OES are improved for several combinations of Skyrme and pairing forces.
Subject
Astronomy and Astrophysics,Instrumentation,Nuclear and High Energy Physics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献