Abstract
Abstract
The spin coating process has been used to deposit pure and Fe3+ doped brookite titania films onto glass substrates. In essence, such as films annealed at 500 °C are found to be orthorhombic crystal structure with brookite phase. X-ray diffractometer measurements revealed that Fe ions are incorporated into cation sites of TiO2. The crystallite size reduces with the doping of Fe3+ ions. The scanning electron microscope images show highly uniform, crack free films and the particles size is found to be within the range of 150–200 nm. Energy-dispersive x-ray spectroscopy analysis Fe3+ doped TiO2 films confirmed good stoichiometry of chemical compositions. The Raman spectra of brookite TiO2 exhibit a very strong characteristic band at 153cm−1. The optical band gap was found to be declined from 3.08 eV to 2.54 eV with adding the Fe ions into TiO2 matrix. The EPR studies approve incorporation of Fe3+ in the crystal lattice of brookite by substituting Ti4+ and generation of defects, and Ti3+ states. Photocatalytic ability of films has been studied by degradation of methyl orange solution under illumination of visible light. The 7% Fe doped brookite film was exhibited high catalytic activity compared to other pure and doped films.
Funder
University Grants Commission
Subject
Mechanics of Materials,Materials Science (miscellaneous),Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献