Low-velocity impact behavior of sandwich composite structure with 3D printed hexagonal honeycomb core: varying core materials

Author:

Nur Ainin F,Azaman M DORCID,Abdul Majid M S,Ridzuan M J M

Abstract

Abstract Additive manufacturing technology is extensively used in aeronautical applications, especially in designing the sandwich composite structures for repair tasks. However, the composite structures are vulnerable to impact loadings because of their exposure to, for instance, loading field carriages, flying debris, and bird strikes. This may lead to crack propagation and ultimately the structural failure. Therefore, it is important to investigate the mechanical behavior of sandwich composite structures under low-velocity impact. In this research, carbon fiber fabric reinforced 3D-printed thermoplastic composite of hexagonal honeycomb cores structures were fabricated with different unit cells (6, 8, and 10 mm) and varying materials (polylactic acid (PLA), PLA-Wood and PLA-Carbon). A drop weight impact test was performed under impact energies (5, 8, and 11 J) to determine the energy absorption performance of the structures whereas the surface morphology was analyzed using a high-intensity optical microscope. Comparing unit cells of materials used, it is observed that the unit cell of 8 mm is the best configuration for lightweight materials with impressive energy absorption capabilities. Under an impact energy of 11 J, the PLA-Wood of unit cell 8 mm shows 9.22 J higher in energy absorption than unit cell 10 mm which is 7.44 J due to intermediate stiffness that resists further deformation. While the filled PLA shows the PLA-Wood material offers better performance in energy absorption capability compared to PLA-Carbon. The PLA-Wood demonstrates 9.22 J more energy absorption for an unit cell 8 mm under an impact energy of 11 J than the PLA-Carbon, which is 8.49 J. This is due to the good compatibility between the hydroxyl groups of the polymer matrix and lignocellulose filler, which translates to better stiffness.

Publisher

IOP Publishing

Subject

Mechanics of Materials,Materials Science (miscellaneous),Ceramics and Composites,Electronic, Optical and Magnetic Materials

Reference38 articles.

1. The soft impact of composite sandwich beams with a square-honeycomb core;Russell;Int. J. Impact Eng.,2012

2. Single and double-layer honeycomb sandwich panels under impact loading;Palomba;Int. J. Impact Eng.,2018

3. Architected cellular materials;Schaedler;Annu. Rev. Mater. Res.,2016

4. The Commonwealth and International Library: Structures and Solid Body Mechanics Division;Allen,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3