Development of solid-state hybrid capacitor using carbon nanotube film as current collector

Author:

Woo Dong Uk,Park Young JinORCID,Cheon Jae Young,Lee Kyunbae,Jung Yeonsu,Kim Patrick Joohyun,Kim TaehoonORCID

Abstract

Abstract Structural energy-storage devices are receiving considerable attention because they can simultaneously store electrical energy and provide structural support, thereby offering high volumetric and gravimetric capacities. Although carbon fiber–based materials have been the most popular choice for current collectors, their conductivity and specific surface area are relatively low; this limits the ability to load other active materials on to the current collector. Carbon nanotube (CNT) fiber is a promising alternative for lightweight structural materials because it has a density of less than 1 g cm−3 as well as high strength and electrical conductivity. In this study, we produced a light, strong, and porous CNT film (CNTF) via direct spinning for use as a current collector. The CNTF exhibited a high specific strength compared with Al foil. We also created an activated carbon–lithium titanium oxide hybrid capacitor with the CNTF current collector, which achieved a capacity similar to that of a capacitor having an Al current collector. Furthermore, a planar pouch cell created using a solid polymer electrolyte achieved a capacity of 74.1 mAh g−1, which is comparable to that of coin cells. Thus, our findings highlight the feasibility of CNTF as a material for current collectors and provide a foundation to develop manufacturing processes for structural batteries.

Funder

National Research Foundation of Korea

Korea Institute of Materials Science

Publisher

IOP Publishing

Reference22 articles.

1. Electrification of road transport;European roadmap,2017

2. Structural supercapacitor composites: a review;Xu;Compos. Sci. Technol.,2021

3. Recent advancements in supercapacitor technology;Raza;Nano Energy,2018

4. Structural battery composites: a review;Asp;Funct. Compos. Struct.,2019

5. Advanced lithium battery cathodes using dispersed carbon fibers as the current collector;Martha;J. Electrochem. Soc.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3