Centrifugally spun hydroxyapatite/carbon composite nanofiber scaffolds for bone tissue engineering

Author:

Akgul YasinORCID,Stojanovska Elena,Calisir Mehmet Durmus,Polat Yusuf,Kilic Ali

Abstract

Abstract In recent years, advancements in tissue engineering have demonstrated the potential to expedite bone matrix formation, leading to shorter recovery times and decreased clinical challenges compared to conventional methods. Therefore, this study aims to develop composite carbon nanofibers (CNFs) integrated with nano-hydroxyapatite (nHA) particles as scaffolds for bone tissue engineering applications. A key strategy in achieving this objective involves harnessing nanofibrous structures, which offer a high surface area, coupled with nHA particles expected to accelerate bone regeneration and enhance biological activity. To realize this, polyacrylonitrile (PAN)/nHA nanofibers were fabricated using the centrifugal spinning (C-Spin) technique and subsequently carbonized to yield CNF/nHA composite structures. Scanning Electron Microscopy (SEM) confirmed C-Spin as a suitable method for PAN and CNF nanofiber production, with nHA particles uniformly dispersed throughout the nanofibrous structure. Carbonization resulted in reduced fiber diameter due to thermal decomposition and shrinkage of PAN molecules during the process. Furthermore, the incorporation of nHA particles into PAN lowered the stabilization temperature (by 5 °C–20 °C). Tensile tests revealed that PAN samples experienced an approximately 80% increase in ultimate tensile strength and a 187% increase in modulus with a 5 wt.% nHA loading. However, following carbonization, CNF samples exhibited a 50% decrease in strength compared to PAN samples. Additionally, the addition of nHA into CNF improved the graphitic structure. The incorporation of nHA particles into the spinning solution represents a viable strategy for enhancing CNF bioactivity.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3