Abstract
Abstract
An enormous amount of research has been conducted on aluminium alloys in friction stir processing (FSP), despite magnesium alloys reporting severe weight reduction when compared to aluminium alloys; a very slight amount of research has testified for FSP of magnesium alloys. Magnesium is highly reactive and susceptible to corrosion in the presence of an aggressive environment. This highly corrosive nature of magnesium limits its applications. Surface properties like crystal structure, composition, and microstructure influence the corrosion and wear properties of the material. Coating techniques and alloying techniques like laser surface modifications are performed to passivate the magnesium surface from corrosion. Coating techniques, however, have been found to be insufficient in corrosion protection due to coating defects like pores, cracks, etc, adhesion problems due to poor surface preparation of the substrate, and impurities present in the coating which provide microgalvanic cells for corrosion. The current study gives a detailed overview of different types of surface modification methods, such as physical vapour deposition, chemical vapour deposition, chemical conversion coating, and ion implantation coating techniques, and also focuses on a few alloying or surface processing methods, such as laser surface modification – namely laser surface melting, laser surface cladding, laser shot peening, laser surface alloying and FSP. FSP is a novel surface modification method derived from friction stir welding, which modifies the microstructure and composition of surface layer without changing the bulk properties to enhance corrosion resistance. FSP enhances and homogenizes the microstructure but also eliminates the breakup of the brittle-network phases and cast microstructure imperfections. Indeed, FSP can produce particle and fibre-reinforced magnesium-based surface composites. FSP empowers the manufacturing of magnesium by adding additives. The different methods of coating and surface modification are compared with FSP.
Subject
Mechanics of Materials,Materials Science (miscellaneous),Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献