Abstract
Abstract
A highly sensitive, reliable, and reproducible sensor for detecting hydrazine was fabricated using a porous cobalt oxide (Co2O3) nanosheets electrode. The Caffeine assisted Co2O3 nanosheets were prepared by a low-temperature aqueous chemical growth method. The morphology, phase purity, and porosity of Co2O3 nanosheets were examined via SEM, XRD, and BET techniques. SEM results reveal the hexagonal sheet-like morphology of synthesized Co2O3 nanosheets, while the XRD technique illustrates high phase purity. Furthermore, the BET technique demonstrated the increased surface area exhibited by the newly synthesized Co2O3 nanomaterial. The hydrazine sensor based on the Co3O4 nanosheet electrode demonstrated relatively high sensitivity (1.632 μA cm−2
μM−1) and a rather low detection limit (0.05 μM) due to the fast electro-oxidation of hydrazine catalyzed by Co3O4 nanosheets. The unique porous structure of Co3O4 nanosheets offers a promising probe candidate for efficient electrochemical sensors of hydrazine.
Subject
Mechanics of Materials,Materials Science (miscellaneous),Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献