Integration of PCM as an external wall layer in reducing excessive heat of building walls

Author:

Nor Ali Umi NadiahORCID,Mohamad Nor Norazman,Misnon Noor Aina,Mohd Noor Siti Aminah,Othman Maidiana,Alias Muhammad Akmal Akif,Syamsir Agusril

Abstract

Abstract Innovative building approaches, which take advantage of heat energy in buildings, have recently appeared as part of a global effort to save energy. Incorporating phase change material (PCM) into the building envelope helps in reducing energy consumption and regulating energy demand by managing the thermal inertia of designed PCM thermal characteristics. A study was conducted to assess the performance benefits provided by the latent heat of the concrete wall combined with PCM. This study focuses on developing and testing heat barrier performance by incorporating PCM into wall external finishing, i.e. cement plaster and gloss paint. The effect of PCM inclusion in building wall were investigated by experimental work. The results indicate that incorporating PCM into the building wall reduced the surface temperature by up to 9 °C. Furthermore, the application of the PCM in the plaster layer is more reliable in reducing the internal wall surface temperature by a value of 8.1 °C when compared to the PCM in a painted coating. Painted wall panels experienced more significant temperature reduction differences than other wall panels, i.e. 9.2 °C and 9.5 °C, respectively. However, painted wall panels experienced higher internal surface temperatures than external surface temperatures compared to plastered wall panel at night. This could be due to the paint reactions, which are ineffective at releasing internal heat from the building at night. The yearly energy demand is decreased by 64.3% by incorporating PCM to the building wall, with a total annual electricity bill savings of 42.3% (8695.8 kWh yr−1). Therefore, it was concluded that wrapped PCM integrated into plaster layers on external surface building walls could decrease the indoor building temperature and thus contribute to conserving the energy required for an air conditioning system.

Funder

Fundamental Research Grant Scheme

Publisher

IOP Publishing

Subject

Mechanics of Materials,Materials Science (miscellaneous),Ceramics and Composites,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3