Mechanical and morphological analysis of cellulose extracted from sisal fibers and their effect on bio-based composites mechanical properties

Author:

Zidi SamirORCID,Miraoui Imed

Abstract

Abstract This study aims to investigate the viability of untreated sisal fibers (N.F.), NaOH-treated sisal fibers (NaOH.F.) and cellulose extracted from sisal (CELL.F.) as an alternative to synthetic materials to produce biocomposites. The main objective was to conduct an in-depth study of the properties of these fibers whose aim is to limit matrix/fiber slippage and improve adhesion by modifying reinforcement surfaces, and to improve the efficiency of sisal fibers as reinforcements for composite materials using various analytical techniques including Fourier transform infrared spectroscopy, scanning electron microscopy, x-ray diffraction, and thermogravimetric analysis. In addition, the study aimed to produce a composite material by reinforcing plaster with the aforementioned fibers and then compare the mechanical and physical properties of the resulting material. The results showed that cellulose fibers exhibited higher mechanical strength and better compatibility with the plaster-matrix compared to sisal fibers by an increse of 324% in their tensil strength compared to natural sial fibers. In particular, the flexural strength showed a significant increase of 35% in the cellulose fiber reinforced composite. The reinforced composite material exhibited improved properties such as better flexural strength, increased absorption by 12.8% and descres the density by 21.3%, highlighting the promising prospects of cellulose fibers in advancing biocomposite technology.

Publisher

IOP Publishing

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimized integration of Opuntia ficus-indica fibers for improved performance in plaster-based composites;Multiscale and Multidisciplinary Modeling, Experiments and Design;2024-06-28

2. The effect of incorporating alfa fibers on the properties of compressed stabilized earth blocks;Euro-Mediterranean Journal for Environmental Integration;2024-06-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3