Abstract
Abstract
The demand for natural composite products to make various industrial and commercial products and protect the environment is continuously increasing. In this paper, a hybrid plant fiber composite (HPFC) is produced by a hand lay-up molding method using 64 wt% resin matrix and 36 wt% natural fibers (kenaf, Grewia and human hair). The influences of the weight of the natural fibers on tensile, flexural and impact strengths were investigated by the simplex lattice method. It was revealed that the percentage contribution of kenaf and human hair fibers to tensile strength, flexural and impact strengths is higher than that of Grewia fiber. The optimum weight percentage of fibers is 13.5 wt% kenaf, 15.3 wt% human hair and 7.2 wt% Grewia to produce a HPFC with desirable mechanical properties. The mechanical properties of the HPFC were compared with those of HPFC without human hair. The tensile, flexural, and impact strengths of the HPFC were 17.95%, 11.1% and 19.79% higher than the HPFC without human hair. The predicted optimum HPFC for making commercial products to fulfill consumer demand is recommended.
Subject
Mechanics of Materials,Materials Science (miscellaneous),Ceramics and Composites,Electronic, Optical and Magnetic Materials
Cited by
41 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献