First-principles study of the specific heat of glass at the glass transition with a case study on glycerol

Author:

Shirai KounORCID,Watanabe Kota,Momida Hiroyoshi

Abstract

Abstract The standard method to determine the transition temperature (T g ) of glasses is the jump in the specific heat, Δ C p . Despite its importance, standard theory for this jump is lacking. The difficulties include lack of proper treatment of the specific heat of liquids, hysteresis, and the timescale issue. The first part of this paper provides a non-empirical method for calculating the specific heat in the glass transition. The method consists of molecular dynamics (MD) simulations based on density-functional theory (DFT) and thermodynamics methods. Calculation of the total energy, which is the heart of DFT, is the most general method for obtaining specific heat for any state of matters. The influence of energy dissipation processes on specific heat is treated by adiabatic MD simulations. The problems of hysteresis and the timescale are alleviated by restricting the scope of calculations to equilibrium states only. The second part of this paper demonstrates the validity and usefulness of the methods by applying to the specific-heat jump of glycerol. By decomposing Δ C p into contributions of the structural, phonon, and thermal expansion energies, an appropriate interpretation for the specific-heat jump has been established: the major contribution to Δ C p is the change in the structural energy. From this, a neat energy diagram about the glass transition is obtained. An outcome of this study is verification of the empirical relationship between the fragility and the specific-heat jump. These two quantities scale to the ratio k = T g / Δ T g , where Δ T g is the width of the transition, through which the two quantities are interrelated.

Funder

Research Program of “Five-star Alliance”

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3