A spintronic analog of the Landauer residual resistivity dipole on the surface of a topological insulator containing a line defect *

Author:

Fabiha Raisa,Bandyopadhyay SupriyoORCID

Abstract

Abstract The Landauer ‘residual resistivity dipole’ is a well-known concept in electron transport through a disordered medium. It is formed when a defect/scatterer reflects an impinging electron causing negative charges to build up on one side of the scatterer and positive charges on the other. This charge imbalance results in the formation of a microscopic electric dipole that affects the electrical resistivity of the medium. Here, we show that an equivalent entity forms in spin polarized electron transport on the surface of a real topological insulator (TI) such as Bi2Te3 containing a line defect. When electrons reflect from such a scatterer, a local spin imbalance forms owing to spin accumulation on one side and depletion on the other side of the scatterer, resulting in a spin current that flows either in the same or in the opposite direction as the injected spin current, and hence, either decreases or increases the spin resistivity. Spatially varying local magnetic fields appear in the vicinity of the scatter, which will cause transiting spins to precess and emit electromagnetic waves. If the current injected into the TI is an alternating current, then the magnetic field’s polarity will oscillate in time with the frequency of the current and if the spins can follow quasi-statically, then they will radiate electromagnetic waves of the same frequency, thereby making the scatterer act as a miniature antenna.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference17 articles.

1. Residual resistivity dipoles;Landauer;Z. Phys. B,1975

2. Exact scattering theory for the Landauer residual resistivity dipole;Zwerger;Phys. Rev. B,1991

3. Hexagonal warping effects in the surface states of the topological insulator Bi2Te3;Fu;Phys. Rev. Lett.,2009

4. Lecture notes on topological insulators;Chang

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3