Local atomic-morphology-resolved edge states in twisted bilayer graphene nanoribbons

Author:

Shao HuaihuaORCID,Zhou GuanghuiORCID

Abstract

Abstract We study the properties of edge states for a selected (10,1)[(4,3)] twisted bilayer graphene (TBG) nanoribbon with minimal edges but a majority of zigzag edges. By using the tight-binding and Green’s function methods, we find a remarkable rule of a local electronic transfer for the edge states. As the energy away from the Fermi level, the transfer is in the order of convex AB-, concave AB-, concave AA- and convex AA-stacked regions of the ribbon curve edges. We illustrate that this rule comes from the difference in interlayer couplings among the four types of local geometries at edges. Further, an in-plane transverse electric field can rearrange the edge bands and enlarge the energy regimes, leading to the lowest energy states modified from AB-stacked edge states to AA-stacked ones. The realignment of the edge bands results from the interplay between the interlayer coupling and the potential difference induced by the transverse electric field, which results in different bonding and antibonding edge states, i.e. the edge bands. In contrast, the total energy regime of the edge bands remain nearly unchanged under a relative strong off-plane perpendicular electric field, and the typical AA-stacked edge states are still maintained even the rotational symmetry of two layers is broken. Until a sufficiently strong value, the TBG nanoribbon tends to behave as two noninteracting monolayer ribbons except for a band distortion in low-energy regime. The conductance spectra reflects the edge bands well. We also discussed the influence of edge defects in the TBG nanoribbon on transport properties. It is found that the contributed conductance of each type of edge states shows different degrees of suppression for a monatomic vacancy in the corresponding region of edges.

Funder

Research Foundations of Liupanshui Normal University

Research Foundation of Department of Education of Guizhou Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3