Feed-forward neural network based variational wave function for the fermionic Hubbard model in one dimension

Author:

Sarder Md Tahir HossainORCID,Medhi AmalORCID

Abstract

Abstract We explore the suitability of a feed-forward neural network (FNN) to represent the ground state of the fermionic Hubbard model in one dimension (1D). We consider the model at half-filling, represent the ground state wave function in terms of an FNN and optimize it using the variational Monte Carlo (VMC) method. The results are compared with the exact Bethe Ansatz solution. We find that for lattice sizes which give a ‘filled-shell’ condition for the non-interacting Fermi sea wave function, a simple FNN performs very well at all values of Hubbard interaction U. For lattice sizes where this condition is not obtained, the simple FNN fails and we find a modified network with a ‘sign’ component (sFNN) to work in such cases. On the flip side, though we find the FNN to be successful in providing an unbiased variational wave function for the fermionic many-body system in 1D, the computational cost for the wave function scales up rapidly with lattice size which limits its applicability.

Funder

Science and Engineering Research Board, DST, Govt of India

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3