Magnetoelastic coupling and critical behavior of some strongly correlated magnetic systems

Author:

Dutta KishoreORCID

Abstract

Abstract The strongly correlated magnetic systems are attracting continuous attention in current condensed matter research due to their very compelling physics and promising technological applications. Being a host to charge, spin, and lattice degrees of freedom, such materials exhibit a variety of phases, and investigation of their physical behavior near such a phase transition bears an immense possibility. This review summarizes the recent progress in elucidating the role of magnetoelastic coupling on the critical behavior of some technologically important class of strongly correlated magnetic systems such as perovskite magnetites, uranium ferromagnetic superconductors, and multiferroic hexagonal manganites. It begins with encapsulation of various experimental findings and then proceeds toward describing how such experiments motivate theories within the Ginzburg-Landau phenomenological picture in order to capture the physics near a magnetic phase transition of such systems. The theoretical results that are obtained by implementing Wilson's renormalization-group to nonlocal Ginzburg-Landau model Hamiltonians are also highlighted. A list of possible experimental realizations of the coupled model Hamiltonians elucidates the importance of spin-lattice coupling near a critical point of strongly correlated magnetic systems.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3