Multi-functional application potential of Ruddlesden–Popper perovskite-based heterostructure PtSe2/Cs2PbI4 with tunable electronic properties

Author:

Liao Cheng-Sheng,Liu BiaoORCID,Yang Jun-LiangORCID,Cai Meng-QiuORCID

Abstract

Abstract Heterogeneous stacking based on two-dimensional Ruddlesden–Popper (RP) perovskite is a desired strategy for the reasonable combination of stability and efficiency. Constructing heterostructures with tunable optoelectronic properties further provide opportunities to design multi-functional devices. Herein, we present a first-principle research to investigate the geometric and electronic structures of RP perovskite heterostructure PtSe2/Cs2PbI4 and its tunable electronic properties induced by thickness modulation and external strains. The results indicate that the heterostructure based on Cs2PbI4 monolayer and PtSe2 monolayer has a type-II band alignment, which is suitable for the photovoltaic applications. With the layer number of PtSe2 in heterostructure increases from monolayer to bilayer, the band alignment of PtSe2/Cs2PbI4 heterostructure can switch from type-II to type-I, which is beneficial for the luminescence device applications. However, when the thickness of PtSe2 in heterostructure further increases to trilayer, the heterostructure exhibits metallic characteristic with a p-type Schottky barrier. In addition, we find the strain engineering is an effective knob in tuning the electronic properties of PtSe2/Cs2PbI4 heterostructures with different thickness. These findings reveal the potential of PtSe2/Cs2PbI4 heterostructure as a tunable hybrid material with substantial prospect in multi-functional applications.

Funder

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3