Ferromagnetic resonance excited by interfacial microwave electric field: the role of current-induced torques

Author:

Deka Angshuman,Rana BivasORCID,Otani YoshiChikaORCID,Fukuma Yasuhiro

Abstract

Abstract Excitation of magnetization dynamics in magnetic materials, especially in ultrathin ferromagnetic films, is of utmost importance for developing various ultrafast spintronics devices. Recently, the excitation of magnetization dynamics, i.e. ferromagnetic resonance (FMR) via electric field-induced modulation of interfacial magnetic anisotropies, has received particular attention due to several advantages, including lower power consumption. However, several additional torques generated by unavoidable microwave current induced because of the capacitive nature of the junctions may also contribute to the excitation of FMR apart from electric field-induced torques. Here, we study the FMR signals excited by applying microwave signal across the metal-oxide junction in CoFeB/MgO heterostructures with Pt and Ta buffer layers. Analysis of the resonance line shape and angular dependent behavior of resonance amplitude revealed that apart from voltage-controlled in-plane magnetic anisotropy (VC-IMA) torque a significant contribution can also arises from spin-torques and Oersted field torques originating from the flow of microwave current through metal-oxide junction. Surprisingly, the overall contribution from spin-torques and Oersted field torques are comparable to the VC-IMA torque contribution, even for a device with negligible defects. This study will be beneficial for designing future electric field-controlled spintronics devices.

Funder

RIKEN Incentive Research Project

NCN SONATA-16

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3