Tunable electronic and optical properties of BAs/WTe2 heterostructure for theoretical photoelectric device design

Author:

Luo Wentao,Wei Xing,Wang Jiaxin,Zhang YanORCID,Chen Huaxin,Yang Yun,Liu JianORCID,Tian Ye,Duan LiORCID

Abstract

Abstract The geometric structure of the BAs/WTe2 heterojunction was scrutinized by employing ab initio calculations grounded on density functional theory. Multiple configurations are constructed to determine the equilibrium state of the heterojunction with optimal stability. The results show that the H1-type heterojunction with interlayer distance of 3.92 Å exhibits exceptional stability and showcases a conventional Type-II band alignment, accompanied by a direct band gap measuring 0.33 eV. By applying external electric field and introducing strain, one can efficaciously modulate both the band gap and the quantity of charge transfer in the heterojunction, accompanied by the transition of band alignment from Type-II to Type-I, which makes it expected to achieve broader applications in light-emitting diodes, laser detectors and other fields. Ultimately, the heterojunction undergoes a transformation from a semiconducting to a metallic state. Furthermore, the outstanding optical characteristics inherent to each of the two monolayers are preserved, the BAs/WTe2 heterojunction also serves to enhance the absorption coefficient and spectral range of the material, particularly within the ultraviolet spectrum. It merits emphasis that the optical properties of the BAs/WTe2 heterojunction are capable of modification through the imposition of external electric fields and mechanical strains, which will expand its applicability and potential for future progression within the domains of nanodevices and optoelectronic apparatus.

Funder

Natural Science Foundation of Shaanxi Province

Fundamental Research Funds for the Central Universities

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3