Anomalous lattice stiffening in tungsten tetraboride solid solutions with manganese under compression

Author:

Li Haijing,Tao Qiang,Dong JuncaiORCID,Gong Yu,Guo ZhiyingORCID,Liao Jiangwen,Hao Xinyu,Zhu Pinwen,Liu Jing,Chen Dongliang

Abstract

Abstract Tungsten tetraboride (WB4)-based solid solutions represent one of the most promising superhard metal candidates; however, their underlying hardening mechanisms have not yet been fully understood. Here, we explore the lattice compressibility of WB4 binary solid solutions with different manganese (Mn) concentrations using high-pressure x-ray diffraction (XRD) up to 52 GPa. Under initial compression, the lattices of low and high Mn-doped WB4 alloys (i.e. W0.96Mn0.04B4 and W0.84Mn0.16B4) are shown to be more and less compressible than pure WB4, respectively. Then, a c-axis softening is found to occur above 39 GPa in WB4, consistent with previous results. However, an anomalous sudden a-axis stiffening is revealed at ~36 GPa in W0.96Mn0.04B4, along with suppression of c-axis softening observed in WB4. Furthermore, upon Mn addition, a simultaneous stiffening of a- and c-axes is demonstrated in W0.84Mn0.16B4 at ~37 GPa. Speculation on the possible relationship between this anomalous stiffening and the combined effects of valence-electron concentration (VEC) and atomic size mismatch is also included to understand the origin of the nearly identical hardness enhancement in those two solid solutions compared to WB4. Our findings emphasize the importance of accurate bonding and structure manipulation via solute atoms to best optimize the hardness of WB4 solid solutions.

Funder

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3