Photocatalytic water splitting properties of GeC/InS van der Waals heterostructure: first-principles calculations

Author:

Wang Jiaxin,Liang Kanghao,Wei Xing,Zhang YanORCID,Chen Huaxin,Yang Yun,Liu JianORCID,Tian Ye,Duan LiORCID

Abstract

Abstract Based on first-principles, we conducted an in-depth study of the GeC/InS van der Waals heterostructure formed by GeC and InS and discussed its structure, electronic properties and optical properties. First, we observe that this heterostructure has negative binding energy, indicating that the interlayer interactions are mainly affected by van der Waals forces. Through band structure and density of state analysis, we confirmed its type-II band alignment characteristics, which means that photogenerated carriers have the ability to automatically separate in space. Moreover, the average charge density difference and Bader charge analysis show that there is a built-in electric field in the heterostructure, and further proves that GeC/InS forms a Z-scheme charge transfer mechanism. Interestingly, the band edge position spans the water redox potential and can fully induce the redox reaction of water splitting, indicating that it is a potential photocatalyst. The high light absorption coefficient shown in the absorption spectrum also further confirms its excellent photocatalytic activity. The most striking thing is that the solar hydrogen production efficiency of GeC/InS heterostructure is as high as 44.39%. Our research demonstrates the theoretical basis for GeC/InS heterostructure as a photocatalyst.

Funder

Fundamental Research Funds for the Central Universities CHD

Natural Science Foundation of Shaanxi Province

Major Project of International Scientific and Technological Cooperation Plan in Shaanxi

National Key R&D Program of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3