Evidence for topological features in the electronic and phononic bands of ZGeSb (Z = Hf, Zr, Ti) class of compounds

Author:

G Rishi,V Anusree C,Kanchana VORCID

Abstract

Abstract Nontrivial topological properties in materials have been found in either the electronic or the phononic bands, but they have seldom been shown in both for a compound. With the aid of first-principle calculations, our paper attempts to find topological features in the electron and phonon band structures of ZGeSb (Z = Hf, Zr, Ti) class of compounds. The electron band structure exhibits two nodal rings in each of these compounds. Furthermore, drumhead surface states (DSS) have also been shown. The phonon band structure depicts one nodal ring in each of these compounds. DSS is also seen in the phonon surface states. Layering possibility has also been explored in HfGeSb, which admits a nodal ring each in its electronic and phononic band structure. Finally, these compounds (bulk and mono-layer) possess Dirac points robust to spin–orbit coupling effects, with at least one such Dirac point with its linear dispersion extending to the Fermi energy. Therefore, these compounds fall under the topological nodal line metals class, which is rarely seen in materials. These compounds’ theoretical nontrivial topological nature in their electronic and phononic band structure provides a profound grasp of electronic and phononic nodal-line physics and is a good candidate for experimental verification. The existence of Dirac points close to the Fermi level could also motivate one to look for extreme magnetoresistance in these compounds. Moreover, given their largely metallic nature, these compounds become an excellent arena for novel device applications.

Funder

Science and Engineering Research Board

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3