High temperature superconductivity in the candidate phases of solid hydrogen

Author:

Dogan MehmetORCID,Oh SehoonORCID,Cohen Marvin L

Abstract

Abstract As the simplest element in nature, unraveling the phase diagram of hydrogen is a primary task for condensed matter physics. As conjectured many decades ago, in the low-temperature and high-pressure part of the phase diagram, solid hydrogen is expected to become metallic with a high superconducting transition temperature. The metallization may occur via band gap closure in the molecular solid or via a transition to the atomic solid. Recently, a few experimental studies pushed the achievable pressures into the 400–500 GPa range. There are strong indications that at some pressure in this range metallization via either of these mechanisms occurs, although there are disagreements between experimental reports. Furthermore, there are multiple good candidate crystal phases that have emerged from recent computational and experimental studies which may be realized in upcoming experiments. Therefore, it is crucial to determine the superconducting properties of these candidate phases. In a recent study, we reported the superconducting properties of the C2/c-24 phase, which we believe to be a strong candidate for metallization via band gap closure (Dogan et al 2022 Phys. Rev. B 105 L020509). Here, we report the superconducting properties of the Cmca-12, Cmca-4 and I41/amd-2 phases including the anharmonic effects using a Wannier function-based dense k-point and q-point sampling. We find that the Cmca-12 phase has a superconducting transition temperature that rises from 86 K at 400 GPa to 212 K at 500 GPa, whereas the Cmca-4 and I41/amd-2 phases show a less pressure-dependent behavior with their T c in the 74–94 K and 307–343 K ranges, respectively. These properties can be used to distinguish between crystal phases in future experiments. Understanding superconductivity in pure hydrogen is also important in the study of high-T c hydrides.

Funder

Basic Energy Sciences

Division of Materials Research

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3