Counterion condensation theory for finite polyelectrolyte and salt concentrations

Author:

Bertolotto J AORCID,Umazano J P

Abstract

Abstract In the present work we analyze the physical fundamentals of Manning’s counterion condensation using his charged line model in a simple salt solution. We extend the theory for the cases of finite saline concentration and polymeric concentration tending to zero and the case of both finite concentrations. To find the equilibrium between the phases of free and condensed counterions, besides minimizing the free energy, we deduce an auxiliary equation to determine the two characteristic parameters of the theory, the fraction of condensed counterions and the volume of condensation. We compare the obtained results in the present work for only one infinite charged line with the ones of counterion condensation theory by Schurr and Fujimoto. We find that the linear density of critical charge depends on the concentration of added salt and takes values higher than one, instead of the unitary value predicted by Manning. We obtain the equations by the activity and osmotic coefficients in function of the critical charge density. We compare them with the corresponding equations by Manning for these parameters. We extend the counterion condensation theory to solutions of linear polyelectrolytes for finite saline and polymeric concentrations using a cell model. We modify the electrostatic contribution to the Gibbs energy adding, to the traditional one calculated by Manning, the energy excess due to the macroion present in a cylindrical cell. We apply the theory to obtain the osmotic coefficient and we compare our results with experimental data of DNA osmotic coefficient and with theoretical adjustment using the Poisson–Boltzmann equation.

Funder

Universidad Nacional de La Pampa

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on soft matter research in Latin America;Journal of Physics: Condensed Matter;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3