Abstract
Abstract
A generalization of the de Gennes–Alexander micronetworks theory is presented. In this framework, the phase transition of synthetic networks of superconducting islands is described by means of a Ginzburg–Landau approach adapted to the case of granular systems. The general implications of the theory are carefully explained. As a specific example, we demonstrate that star networks support the exponential localization of the order parameter accompanied by an enhancement of the critical temperature of the system. These findings contribute to clarify the physics of the phase transitions in synthetic networks of Josephson-coupled superconducting islands.
Subject
Condensed Matter Physics,General Materials Science
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献