Physical binding energies using the electron localization function in 4-hydroxyphenylboronic acid co-crystals with aza donors

Author:

Shimpi Mayura TalwelkarORCID,Sajjad MuhammadORCID,Öberg Sven,Larsson J AndreasORCID

Abstract

Abstract Binding energies are traditionally simulated using cluster models by computation of each synthon for each individual co-crystal former. However, our investigation of the binding strengths using the electron localization function (ELF) reveals that these can be determined directly from the crystal supercell computations. We propose a new modeling protocol for the computation of physical binding energies directly from bulk simulations using ELF analysis. In this work, we establish a correlation between ELF values and binding energies calculated for co-crystals of 4-hydroxyphenylboronic acid (4HPBA) with four different aza donors using density functional theory with varying descriptions of dispersion. Boronic acids are gaining significant interest in the field of crystal engineering, but theoretical studies on their use in materials are still very limited. Here, we present a systematic investigation of the non-covalent interactions in experimentally realized co-crystals. Prior diffraction studies on these complexes have shown the competitive nature between the boronic acid functional group and the para-substituted phenolic group forming heteromeric interactions with aza donors. We determine the stability of the co-crystals by simulating their lattice energies, and the different dispersion descriptions show similar trends in lattice energies and lattice parameters. Our study bolsters the experimental observation of the boronic acid group as a competitive co-crystal former in addition to the well-studied phenolic group. Further research on correlating ELF values for physical binding could potentially transform this approach to a viable alternative for the computation of binding energies.

Funder

National Academic Infrastructure for Supercomputing in Sweden

Swedish Research Council

Kempestiftelserna

Knut and Alice Wallenberg Foundation

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Reference82 articles.

1. Crystal engineering: from structure to function;Hollingsworth;Science,2002

2. Crystal engineering: strategies and architectures;Aakeröy;Acta Crystallogr. B,1997

3. Recent advances in crystal engineering;Aakeröy;CrystEngComm,2010

4. Pharmaceutical cocrystals and poorly soluble drugs;Thakuria;Int. J. Pharm.,2013

5. Impact of pharmaceutical cocrystals: the effects on drug pharmacokinetics;Shan;Expert Opin. Drug Metab. Toxicol.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3