Machine learning interatomic potentials for aluminium: application to solidification phenomena

Author:

Jakse NoelORCID,Sandberg Johannes,Granz Leon FORCID,Saliou Anthony,Jarry Philippe,Devijver Emilie,Voigtmann ThomasORCID,Horbach Jürgen,Meyer Andreas

Abstract

Abstract In studying solidification process by simulations on the atomic scale, the modeling of crystal nucleation or amorphization requires the construction of interatomic interactions that are able to reproduce the properties of both the solid and the liquid states. Taking into account rare nucleation events or structural relaxation under deep undercooling conditions requires much larger length scales and longer time scales than those achievable by ab initio molecular dynamics (AIMD). This problem is addressed by means of classical molecular dynamics simulations using a well established high dimensional neural network potential trained on a set of configurations generated by AIMD relevant for solidification phenomena. Our dataset contains various crystalline structures and liquid states at different pressures, including their time fluctuations in a wide range of temperatures. Applied to elemental aluminium, the resulting potential is shown to be efficient to reproduce the basic structural, dynamics and thermodynamic quantities in the liquid and undercooled states. Early stages of crystallization are further investigated on a much larger scale with one million atoms, allowing us to unravel features of the homogeneous nucleation mechanisms in the fcc phase at ambient pressure as well as in the bcc phase at high pressure with unprecedented accuracy close to the ab initio one. In both cases, a single step nucleation process is observed.

Funder

IDRIS

German Academic Exchange Service

Centre of Excellence of Multifunctional Architectured Materials “CEMAM” ANR

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3