Quantum spin Hall and quantum anomalous Hall states in magnetic Ti2Te2O single layer

Author:

Ma Hai-YangORCID,Guan DandanORCID,Wang Shiyong,Li Yaoyi,Liu Canhua,Zheng Hao,Jia Jin-FengORCID

Abstract

Abstract Magnetic topological insulators, such as MnBi2Te4 have attracted great attention recently due to their application to the quantum anomalous Hall (QAH) effect. However, the magnetic quantum spin Hall (QSH) effect in two-dimensional (2D) materials has not yet been reported. Here based on first-principle calculations we find that Ti2Te2O, a van der Waals layered compound, can cherish both the QAH and QSH states, depending on the magnetic order in its single layer. If the single layer was in a chessboard antiferromagnetic (FM) state, it is a QSH insulator which carries two counterpropagating helical edge states. The spin–orbit-couplings induced bulk band gap can approach as large as 0.31 eV. On the other hand, if the monolayer becomes FM, exchange interactions would push one pair of bands away from the Fermi energy and leave only one chiral edge state remaining, which turns the compound into a Chern insulator (precisely, it is semimetallic with a topologically direct band gap). Both magnetic orders explicitly break the time reversal symmetry and split the energy bands of different spin orientations. To our knowledge, Ti2Te2O is the first compound that predicted to possess both intrinsic QSH and QAH effects. Our works provide new possibilities to reach a controllable phase transition between two topological nontrivial phases through magnetism tailoring.

Funder

Strategic Priority Research Program of Chinese Academy of Sciences

Science and Technology Commission of Shanghai Municipality

Ministry of Science and Technology of China

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3