A simple and robust machine learning assisted process flow for the layer number identification of TMDs using optical contrast spectroscopy

Author:

Joy Nikhil Joseph,K Ranjuna MORCID,Balakrishnan JayakumarORCID

Abstract

Abstract Layered transition metal dichalcogenides (TMDs) like tungsten disulphide (WS2) possess a large direct electronic band gap (∼2 eV) in the monolayer limit, making them ideal candidates for opto-electronic applications. The size and nature of the bandgap is strongly dependent on the number of layers. However, different TMDs require different experimental tools under specific conditions to accurately determine the number of layers. Here, we identify the number of layers of WS2 exfoliated on top of SiO2/Si wafer from optical images using the variation of optical contrast with thickness. Optical contrast is a universal feature that can be easily extracted from digital images. But fine variations in the optical images due to different capturing conditions often lead to inaccurate layer number determination. In this paper, we have implemented a simple Machine Learning assisted image processing workflow that uses image segmentation to eliminate this difficulty. The workflow developed for WS2 is also demonstrated on MoS2, graphene and h–BN, showing its applicability across various classes of 2D materials. A graphical user interface is provided to enhance the adoption of this technique in the 2D materials research community.

Funder

DST-SERB

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3