Abstract
Abstract
Within the Bardeen–Cooper–Schrieffer (BCS) theory, superconductivity is entirely governed by the pairing energy scale, which gives rise to the superconducting energy gap, Δ. However, another important energy scale, the superfluid phase stiffness, J, which determines the resilience of the superconductor to phase-fluctuations is normally ignored. The spectacular success of BCS theory owes to the fact that in conventional superconductors J is normally several orders of magnitude larger than Δ and thus an irrelevant energy scale. However, in certain situations such as in the presence of low carrier density, strong disorder, at low-dimensions or in granular superconductors, J can drastically come down and even become smaller than Δ. In such situations, the temperature and magnetic field evolution of superconducting properties is governed by phase fluctuations, which gives rise to novel electronic states where signatures of electronic pairing continue to exist even when the zero resistance state is destroyed. In this article, we will review the recent experimental developments on the study of phase fluctuations in conventional superconductors.
Funder
Department of Atomic Energy, Government of India
Subject
Condensed Matter Physics,General Materials Science
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献