Non-equivalent nature of acetylenic bonds in typical square graphynes and intricate negative differential resistance characteristics

Author:

Nath SubhadipORCID,Sekhar Mondal Niladri,Bandyopadhyay ArkaORCID,Mondal Rajkumar,Jana DebnarayanORCID

Abstract

Abstract The role of acetylenic linkage in determining the exotic band structures of 4, 12, 2- and 4, 12, 4- graphynes is reported. The Dirac bands, as confirmed by both density functional theory and tight-binding calculations, are robust and stable over a wide range of hopping parameters between s p - s p -hybridized carbon atoms. The shifting of the crossing points of the Dirac bands along the k-path of these two square graphynes is found to be in opposite direction with the hopping along with the acetylenic bond. A real space decimation scheme has also been adopted for understanding this interesting behavior of the band structure of these two graphynes. The condition for the appearance of a nodal ring in the band structure has been explored and critically tested by appropriate Boron-Nitrogen doping. Moreover, both the graphynes exhibit negative differential resistance in their current–voltage characteristics, with 4, 12, 2- graphynes showing superiority.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3