Frequency dynamics of a chain of magnetized rotors: dumbbell model vs Landau–Lifshitz equation

Author:

Urbina FORCID,Franco A FORCID,Concha A

Abstract

Abstract During the past decades magnetic materials and structures that span several length scales have been of interest mainly due to their application in data storage and processing, flexible electronics, medicine, between others. From a microscopic point of view, these systems are typically studied using the Landau–Lifshitz equation (LLE), while approaches such as the dumbbell model are used to study macroscopic magnetic structures. In this work we use both the LLE and the dumbbell model to study spin chains of various lengths under the effect of a time dependent-magnetic field, allowing us to compare qualitatively the results obtained by both approaches. This has allowed us to identify and describe in detail several frequency modes that appear, with additional modes arising as the chain length increases. Moreover, we find that high frequency modes tend to be absorbed by lower frequency ones as the amplitude of the field increases. The results obtained in this work are of interest not only to better understand the behavior of the macroscopic spins chains, but also expands the available tools for qualitative studies of both macroscopic and microscopic versions of the studied system, or more complex structures such as junctions or lattices. This would allow to study the qualitative behavior of microscopic systems (e.g. nanoparticles) using macroscopic arrays of magnets, and vice versa.

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3