Polymer compaction and bridging-induced clustering of protein-inspired patchy particles

Author:

Brackley C AORCID

Abstract

Abstract There are many proteins or protein complexes which have multiple DNA binding domains. This allows them to bind to multiple points on a DNA molecule (or chromatin fibre) at the same time. There are also many proteins which have been found to be able to compact DNA in vitro, and many others have been observed in foci or puncta when fluorescently labelled and imaged in vivo. In this work we study, using coarse-grained Langevin dynamics simulations, the compaction of polymers by simple model proteins and a phenomenon known as the ‘bridging-induced attraction’. The latter is a mechanism observed in previous simulations [Brackley et al 2013 Proc. Natl Acad. Sci. USA 110 E3605], where proteins modelled as spheres form clusters via their multivalent interactions with a polymer, even in the absence of any explicit protein–protein attractive interactions. Here we extend this concept to consider more detailed model proteins, represented as simple ‘patchy particles’ interacting with a semi-flexible bead-and-spring polymer. We find that both the compacting ability and the effect of the bridging-induced attraction depend on the valence of the model proteins. These effects also depend on the shape of the protein, which determines its ability to form bridges.

Funder

H2020 European Research Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3