Abstract
Abstract
Two-dimensional (2D) materials with both auxetic effect and ferroelasticity are rare, however, have great application potential in next generation microelectromechanical and nanoelectronic devices. Here, we report the findings of an extraordinary combination half-auxetic effect and ferroelasticity in a single p2mm-type TiSe monolayer by performing first-principles calculations. The unique half-auxetic effect, namely the material expand laterally under both uniaxial tensile strain, and compressive strain, is reported and explained by considering both the nearest and the next-nearest interactions. The ferroelasticity is stemming from the degeneracy breaking of the 3d-orbitals of Ti atoms in a distorted tetrahedron crystal field, or the so-called Jahn–Teller effect. The results provide a guideline for the future design of novel 2D multiple functional materials at the nanoscale.
Subject
Condensed Matter Physics,General Materials Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献