Evolution of Griffiths phase and critical behaviour of La1-x Pb x MnO3±y solid solutions

Author:

Ghorai SagarORCID,Ivanov Sergey A,Skini Ridha,Svedlindh PeterORCID

Abstract

Abstract Polycrystalline La1-x Pb x MnOy (x = 0.3, 0.35, 0.4) solid solutions were prepared by solid state reaction method and their magnetic properties have been investigated. Rietveld refinement of x-ray powder diffraction patterns showed that all samples are single phase and crystallized with the rhombohedral structure in the R-3c space group. A second order paramagnetic to ferromagnetic (FM) phase transition was observed for all materials. The Griffiths phase (GP), identified from the temperature dependence of the inverse susceptibility, was suppressed by increasing magnetic field and showed a significant dependence on A-site chemical substitution. The critical behaviour of the compounds was investigated near to their Curie temperatures, using intrinsic magnetic field data. The critical exponents (β, γ and δ) are close to the mean-field approximation values for all three compounds. The observed mean-field like behaviour is a consequence of the GP and the formation of FM clusters. Long-range FM order is established as the result of long-range interactions between FM clusters. The magnetocaloric effect was studied in terms of the isothermal entropy change. Our study shows that the material with the lowest chemical substitution (x = 0.3) has the highest potential (among the three compounds) as magnetic refrigerant, owing to its higher relative cooling power (258 J kg−1 at 5 T field) and a magnetic phase transition near room temperature.

Funder

Swedish Foundation for Strategic Research

FITC HF RAS

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3