Magnetic fluctuations and the spin–orbit interaction in Mott insulating CoO

Author:

Sarte P MORCID,Wilson S DORCID,Attfield J PORCID,Stock CORCID

Abstract

Abstract Motivated by the presence of an unquenched orbital angular momentum in CoO, a team at Chalk River, including a recently hired research officer Roger Cowley, performed the first inelastic neutron scattering experiments on the classic Mott insulator [Sakurai et al 1968 Phys. Rev. 167 510]. Despite identifying two magnon modes at the zone boundary, the team was unable to parameterise the low energy magnetic excitation spectrum below T N using conventional pseudo-bosonic approaches, instead achieving only qualitative agreement. It would not be for another 40 years that Roger, now at Oxford and motivated by the discovery of the high-T c cuprate superconductors [Bednorz and Muller 1986 Z. Phys. B 64 189], would make another attempt at the parameterisation of the magnetic excitation spectrum that had previously alluded him at the start of his career. Upon his return to CoO, Roger found a system embroiled in controversy, with some of its most fundamental parameters still remaining undetermined. Faced with such a formidable task, Roger performed a series of inelastic neutron scattering experiments in the early 2010s on both CoO and a magnetically dilute structural analogue Mg0.97Co0.03O. These experiments would prove instrumental in the determination of both single-ion [Cowley et al 2013 Phys. Rev. B 88 205117] and cooperative magnetic parameters [Sarte et al 2018 Phys. Rev. B 98 024415] for CoO. Both these sets of parameters would eventually be used in a spin–orbit exciton model [Sarte et al 2019 Phys. Rev. B 100 075143], developed by his longtime friend and collaborator Bill Buyers, to successfully parameterise the complex spectrum that both measured at Chalk River almost 50 years prior. The story of CoO is of one that has come full circle, one filled with both spectacular failures and intermittent, yet profound, little victories.

Funder

H2020 European Research Council

Engineering and Physical Sciences Research Council

Carnegie Trust for the Universities of Scotland

Science and Technology Facilities Council

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3