Morphology and energy transfer study between conjugated polymers thin films: experimental and theoretical approaches

Author:

Wouk Luana,Holakoei Soheila,Benatto LeandroORCID,Pacheco Kaike Rosivan Maia,de Jesus Bassi Maiara,de Oliveira Camilla K B Q M,Bagnis Diego,Rocco Maria Luiza Miranda,Roman Lucimara StolzORCID

Abstract

Abstract In this paper, the effect of a silafluorene derivative copolymer, the poly[2,7-(9,9-dioctyl-dibenzosilole)-alt-4,7-bis(thiophene-2-yl)benzo-2,1,3-thiadiazole] (PSiF-DBT) sensitized by a simpler homopolymer, the poly[2-methoxy-5-(3′,7′-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) were investigated in a bilayer and ternary blend configuration. The energy transfer between the polymers prior to electron transfer to the acceptors can be an efficient alternative to photocurrent improvement in photovoltaic devices. The interactions between the two donor polymer films were evaluated optically and morphologically with several experimental techniques and correlated to the photovoltaic performance. Improved photon to charge conversion was observed in the blend films at different device geometries—considering bilayer devices with fullerene and inverted flexible devices blade coated in air conditions with a non-fullerene small molecule acceptor. Resonant Auger spectroscopy using the core–hole clock method was employed to evaluate the ultrafast charge delocalization times of conjugated polymers in the low-femtosecond regime. Density functional theory and time-dependent DFT methods were used to help understand some experimental observations. The results show that the homopolymer can improve the absorption spectra and the nonradiative-energy transfer from MDMO-PPV to PSiF-DBT and act as a photosensitizer in the copolymer units. In addition, the PSiF-DBT blended with MDMO-PPV exhibits a more organized structure than the neat material resulting in better absorption stability of films kept under continuous illumination.

Funder

National Synchrotron Light Laboratory, Brazil

National Council for the Improvement of Higher Education (CAPES), CAPES

National Council for Scientific and Technological Development

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Special issue on soft matter research in Latin America;Journal of Physics: Condensed Matter;2023-07-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3