Abstract
Abstract
The prediction of magnetic phase transitions often requires model Hamiltonians to describe the necessary magnetic interactions. The advance of machine learning provides an opportunity to build a unified approach that can treat various magnetic systems without proposing new model Hamiltonians. Here, we develop such an approach by proposing a novel set of descriptors that describes the magnetic interactions and training the artificial neural network (ANN) that plays the role of a universal magnetic Hamiltonian. We then employ this approach and Monte Carlo simulation to investigate the magnetic phase transition of two-dimensional monolayer chromium trihalides using the trained ANNs as energy calculator. We show that the machine-learning-based approach shows advantages over traditional methods in the investigation of ferromagnetic and antiferromagnetic phase transitions, demonstrating its potential for other magnetic systems.
Funder
National Natural Science Foundation of China
Guangxi Key Laboratory of Optical and Electronic Materials and Devices
Natural Science Foundation
Natural Science Foundation of Guangxi
NSFC
Research Funds for the Central Universities
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献