Spin caloritronics in metallic superlattices

Author:

Seki TORCID,Uchida KORCID,Takanashi KORCID

Abstract

Abstract Spin caloritronics, a research field studying on the interconversion between a charge current ( J c ) and a heat current ( J q ) mediated by a spin current ( J s ) and/or magnetization (M), has attracted much attention not only for academic interest but also for practical applications. Newly discovered spin-caloritronic phenomena such as the spin Seebeck effect (SSE) have stimulated the renewed interest in the thermoelectric phenomena of a magnet, which have been known for a long time, e.g. the anomalous Nernst effect (ANE). These spin-caloritronic phenomena involving the SSE and the ANE have provided with a new direction for thermoelectric conversion exploiting J s and/or M. Importantly, the symmetry of ANE allows the thermoelectric conversion in the transverse configuration between J q and J c . Although the transverse configuration is totally different from the conventional longitudinal configuration based on the Seebeck effect and has many advantages, we are still facing several issues that need to be solved before developing practical applications. The primal issue is the improvement of conversion efficiency. In the case of ANE-based applications, a material with a large anomalous Nernst coefficient ( S ANE ) is the key for solving the issue. This review article introduces the increase of S ANE can be achieved by forming superlattice structures, which has been demonstrated for several kinds of materials combinations. The overall picture of studies on spin caloritronics is first surveyed. Then, we mention the pioneering work on the transverse thermoelectric conversion in superlattice structures, which was performed using Fe-based metallic superlattices, and show the recent studies for the Ni-based metallic superlattices and the ordered alloy-based metallic superlattices.

Funder

JSPS

JST

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3