Spin-resolved transport of multifunctional C18 molecule-based nanodevices: a first-principles study

Author:

Xiong Songbo,Dong Xiansheng,Xie Luzhen,Guan Zhiyong,Long MengqiuORCID,Chen TongORCID

Abstract

Abstract As is well known, Kasier et al first synthesized a cyclic molecule C18, as characterized by high-resolution atomic force microscopy, is a polyalkylene structure in which the 18 carbon atoms are linked by alternating single and triple bonds Kaiser et al (2019 Science 365 1299–301). Early studies have found that the C18 molecule has semiconducting properties, suggesting that a similar straight-chain carbon structure could become a molecular device. Inspired by this, an analysis of spin-resolved electronic transport of nanodevices made by C18 sandwiched between zigzag graphyne nanoribbon leads or zigzag graphene nanoribbon leads presents here. The computational results demonstrate that a good spin-filtering effect, spin rectifying effect and an obvious negative differential resistance behavior in designed model devices can be obtained. Moreover, a stable dual-spin filtering effect or diode effect can be occurred in considered model devices with leads in an antiparallel state. The intrinsic mechanisms of molecular nanodevices are explained in detail by analyzing the transmission spectrum under different bias voltage, local density of states, molecular projection Hamiltonian, Current–Voltage (I–V) characteristics, transmission pathways, et al. These results are particularly significant for the development of multifunctional spintronic nanodevices.

Funder

Natural Science Foundation of Jiangxi Province

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3