Structural evolution of granular cubes packing during shear-induced ordering

Author:

Ding Yunhao,Yang Jing,Ou Yao,Zhao Yu,Li Jianqi,Hu BingwenORCID,Xia ChengjieORCID

Abstract

Abstract Packings of granular particles may transform into ordered structures under external agitation, which is a special type of out-of-equilibrium self-assembly. Here, evolution of the internal packing structures of granular cubes under cyclic rotating shearing has been analyzed using magnetic resonance imaging techniques. Various order parameters, different types of contacts and clusters composed of face-contacting cubes, as well as the free volume regions in which each cube can move freely have been analyzed systematically to quantify the ordering process and the underlying mechanism of this granular self-assembly. The compaction process is featured by a first rapid formation of orientationally ordered local structures with faceted contacts, followed by further densification driven by free-volume maximization with an almost saturated degree of order. The ordered structures are strongly anisotropic with contacting ordered layers in the vertical direction while remaining liquid-like in the horizontal directions. Therefore, the constraint of mechanical stability for granular packings and the thermodynamic principle of entropy maximization are both effective in this system, which we propose can be reconciled by considering different depths of supercooling associated with various degrees of freedom.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3