Magnetic and transport properties of new ternary uranium-based germanide U2Rh3Ge5

Author:

Li D XORCID,Shimizu YORCID,Nakamura A,Maurya A,Sato Y J,Homma Y,Honda F,Aoki D

Abstract

Abstract A new ternary uranium germanide U2Rh3Ge5 has been successfully synthesized and investigated by means of magnetic susceptibility χ(T, H), isothermal magnetization M(T, H), electrical resistivity ρ(T), and specific heat C(T, H) measurements. This compound is found to crystallize in the U2Co3Si5-type orthorhombic structure. The low-field χ(T) shows a clear peak at T N = 41.5 K corresponding to an antiferromagnetic transition. The M(H) curve measured up to 70 kOe exhibits an H-linear behavior at 2 K with very small induced magnetic moments, while it shows upward curvature with increasing temperature, implying the possible presence of a metamagnetic transition in high-field region above 70 kOe. As the temperature decreases, ρ(T) increases slowly at T > T N and decreases rapidly at T < T N, which can be understood based on a semiconductor-like narrow band gap model (or the c-f hybridization effect) and an antiferromagnetic spin-wave model, respectively. No evidence of heavy-fermion behavior or superconductivity transition is observed at temperatures as low as 0.4 K. The obtained experimental results are discussed by comparing with those reported for the isomorphic compound U2Ir3Si5 and the quasi-isomorphic compound U2Rh3Si5.

Funder

KAKENHI

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3