Abstract
Abstract
Nitrogen-rich compounds containing polynitrogen are attractive candidates for high-energy-density materials. In this work, using first-principles calculations and a particle swarm optimization structural search method, four novel nitrogen-rich structures are predicted at high pressures, i.e., two ZnN3 phases with the same space group P1 (low-pressure phase LP-ZnN3 and high-pressure phase HP-ZnN3), Cmm2-ZnN5 and Pcc2-ZnN6, the energy density are estimated to be 1.41 kJ g−1, 1.88 kJ g−1, 4.07 kJ g−1, and 2.60 kJ g−1, respectively. LP-ZnN3 (54–72 GPa) and HP-ZnN3 (above 72 GPa) have the lowest enthalpies in all known ZnN3 phases, and the N6 chains in LP-ZnN3 polymerize into infinite nitrogen chains in HP-ZnN3 at 72 GPa, showing a narrow-band-gap-semiconductor to metallic phase transition. Interestingly, P1-ZnN3 has a superconducting transition temperature of 6.2 K at 50 GPa and 16.3 K at 100 GPa. In Cmm2-ZnN5 and Pcc2-ZnN6, nitrogen atoms polymerize into three-dimensional network structures and network layers under high pressures. Those predicted structures may enrich the phase diagram of high-pressure zinc nitrides, and provide clues for synthesis and exploration of novel stable polymeric nitrogen.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Subject
Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献