Abstract
Abstract
Silicon carbide (SiC) is widely used as the substrate for high power electronic devices as well as susceptors for microwave (MW) heating. The dynamics of microwave interaction with SiC is not fully understood, especially at the material boundaries. In this paper, we used the molecular dynamics simulation method to study the temperature evolution during the microwave absorption of SiC under various amplitudes and frequencies of the microwave electric field. Directional MW heating of a SiC crystal slab bounded by surfaces along [100] crystallographic direction shows significantly faster melting when the field is applied parallel to the surface compared to when applied perpendicular.
Subject
Condensed Matter Physics,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献