Nonlocal phonon thermal transport in graphene in hydrodynamic regime

Author:

Luo Xiao-PingORCID,Guo Yang-YuORCID,Yi Hong-LiangORCID

Abstract

Abstract The hydrodynamic behavior of phonons is of particular interest and importance owing to the strong demand for highly thermal conductive materials. Thermal transport in hydrodynamic regime becomes essentially nonlocal, which can give rise to a number of new and counterintuitive phenomena. In this work, we present a direct numerical study of nonlocal phonon thermal transport in graphene ribbon with vicinity geometry based on the phonon Boltzmann transport equation with first-principles inputs. We demonstrate the viscosity-dominated hydrodynamic transport behaviors with two abnormal thermal transport phenomena: heat current whirlpools and negative nonlocal effect, which originate from phonon viscosity. Phonon viscosity produces the vorticity of shear flows, leading to the backflow of the heat current and the generation of negative nonlocal vicinity response. The system average temperature and the ribbon width as well as the relative positions of the heat sources play a pivotal role in the occurrence of heat current whirlpools and negative nonlocal temperature response. The present work provides solid evidence for phonon hydrodynamic transport in graphene and a potential avenue for experimental detection in the future.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3