Hydrogenation driven ultra-low lattice thermal conductivity in β 12 borophene

Author:

Sharma AshishORCID,Rangra Vir Singh

Abstract

Abstract Borophene gathered large interest owing to its polymorphism and intriguing properties such as Dirac point, inherent metallicity, etc but oxidation limits its capabilities. Hydrogenated borophene was recently synthesised experimentally to harness its applications. Motivated by experimental work, in this paper, using first-principles calculations and Boltzmann transport theory, we study the freestanding β 12 borophene nanosheet doped and functionalised with hydrogen (H), lithium (Li), beryllium (Be), and carbon (C) atoms at different β 12 lattice sites. Among all possible configurations, we screen two stable candidates, pristine and hydrogenated β 12 borophene nanosheets. Both nanosheets possess dynamic and mechanical stability while the hydrogenated sheet has different anisotropic metallicity compared to pristine sheet leading to enhancement in brittle behaviour. Electronic structure calculations reveal that both nanosheets host Dirac cones (DCs), while hydrogenation leads to shift and enhancement in tilt of the DCs. Further hydrogenation leads to the appearance of additional Fermi pockets in the Fermi surface. Transport calculations reveals that the lattice thermal conductivity changes from 12.51 to 0.22 W m−1 K−1 (along armchair direction) and from 4.42 to 0.07 W m−1 K−1 (along zigzag direction) upon hydrogenation at room temperature (300 K), demonstrating a large reduction by two orders of magnitude. Such reduction is mainly attributed to decreased phonon mean free path and relaxation time along with the enhanced phonon scattering rates stemming from high frequency phonon flat modes in hydrogenated nanosheet. Comparatively larger weighted phase space leads to increased anharmonic scattering in hydrogenated nanosheet contributing to ultra-low lattice thermal conductivity. Consequently, hydrogenated β 12 nanosheet exhibits a comparatively higher thermoelectric figure of merit (∼0.75) at room temperature along armchair direction. Our study demonstrates the effects of functionalisation on transport properties of freestanding β 12 borophene nanosheets which can be utilised to enhance the thermoelectric performance in two-dimensional (2D) systems and expand the applications of boron-based 2D materials.

Publisher

IOP Publishing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3