Abstract
Abstract
The magnetism in the correlated metal CaRuO3 is enigmatic as it is poised near a triple point among the ferromagnetic, antiferromagnetic, and paramagnetic ground states. Here we report a detailed work on structural, spectroscopic, magnetic, and transport properties in CaRu
1
−
x
Cr
x
O3. We find that Cr doping reduces the orthorhombicity in CaRuO3. Surprisingly, a tiny (x = 0.01) amount of Cr-doping drives the magnetic ground state from ‘paramagnetic-like’ to ferrimagnetic. Slightly higher Cr-doping (x = 0.05) results formation of magnetic clusters which gives rise to Griffiths singularity and power law divergence in magnetic susceptibility. The magnetism in CaRu
1
−
x
Cr
x
O3 is explained in terms of ‘seven atom’ ferrimagnetic clusters. Electrical transport shows a gradual evolution of a non-metallic state upon Cr-doping. In particular, for x
⩾
0.1, the temperature-dependent resistivity follows Mott-VRH conduction. The XPS study also supports significant role of disorder and electron correlation which effectively reduces the itinerant character of electrons. Finally, a new T-x phase diagram is constructed depicting the evolution of electronic and magnetic state in CaRu
1
−
x
Cr
x
O3.
Funder
Science and Engineering Research Board
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献