Stability of DNA and RNA hairpins: a comparative study based on ox-DNA

Author:

Yang Chao,Song Xiaoya,Feng Yuyu,Zhao Guangju,Liu YanhuiORCID

Abstract

AbstractAdvances in single-molecule experiments on macromolecular crowding urgently need an efficient simulation method to resolve their discrepancies quantitatively. Ox-DNA model has been since reworked to treat the thermodynamics and mechanical properties of DNA/RNA hairpin at a stretching force. In hopping experiments, the critical forces of RNA hairpins at different temperatures are greater than those of DNA hairpins, in addition, the Gibbs free energy at a fixed temperature required to convert an RNA hairpin into a single-stranded molecule at zero force is obviously greater than that of DNA hairpin and gradually decreases by increasing the temperature. As far as force-ramping experiments are concerned, the first-rupture forces of RNA/DNA hairpins corresponding to the maximum probability density linearly pertain to the force-loading rate, with those of RNA hairpins being greater. The extended ox-DNA model could potentially identify the interaction between biologically inert polymer and RNA/DNA hairpins in crowded environments.

Funder

Guizhou Scientific and Technological Program

National Natural Science Foundation of China

Publisher

IOP Publishing

Subject

Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3